Left Atrial Pressures

Brussels September 2007

The University of Sydney

Anthony Mclean Nepean Intensive Care Professor Sydney University Australia

Methods available to determine LV preload in the critically ill

- clinical examination ;skin turgor,UO, etc
- cvp as guide to LVEDP
- response to headtown tilt, fluid challenge
- arterial wave form analysis
- Pulmonary artery catheter
- PiCCO
- echocardiography

Echo assessment of LV preload

Downside

- + need good Doppler signals
- + specificity mediocre
- + negated in atrial fibrillation
- + time consuming

QuickTime^a and aVideo decompressorare needed to see this picture.

Good reasons for assessing LAP by echo . . .

- often clinically useful
- reasonably reliable
- use of different methods adds to accuracy
- noninvasive

assumptions -----

o LV preload = LVEDP

 \circ LVEDP = LAP

<u>Methods of measuring left atrial pressure</u>

Left atrial and ventricular size as a guide to LAP

- O Subjective review LV and LA size crude but often very useful re hypovolaemia
- LVEDA reasonable guide to fluid status in OT setting ¹
- LVEDA not so useful in critical care setting in that not influenced by fluid challenge²

Interatrial septum motion as a guide to LAP

- 0 IAS usual motion is towards RA during diastole, towards LA early systole
- LA is less compliant than RA and an equal change in pressure will result in more marked change in the LA compared to the RA
- o IAS motion will reflect this change

Interatrial septum motion as a guide to LAP

o IAS motion will reflect LAP

TOE/PAC N= 71 Fixed Curvature IAS (L ---> R) = PCWP > 18 mm Hg

1.Royce C et al 2000

J Cardiothorac Vasc Anaes

Methods of measuring left atrial pressure

Left chamber size

TDI mitral annulus

IAS movement

QuickTime^a and aVideo decompressorare needed to see this picture.

- O Systolic forward flow velocity is strongly and inversely related to LV filling pressures (exceptions eg eccentric MR)
- Methods i) Systolic fraction

 ii) Ar/Adur
 iii) DT diastolic flow

i) Systolic fraction

<u>VTI systolic</u> VTI systolic + diastolic < 40%

= LAP > 18 mm Hg

Ref: Kuecherer H et al Circulation 1990;82:1127

S = 10 S + D = 15.9SF = 10/15.9 ie > 40%. LAP<18

i) Ar/Adur

$A_r > A_{dur}$ predicts a LAP > 15 mm Hg

Ref: Rossvol O, Hatle LK. JACC 1993; 21:1687

$$A_{dur} = 135 \text{ ms}$$

 $A_r = 140$ msec

ie LAP elevated

iii) Deceleration Time PV diastolic flow.

DTd < 175 msec predicts a LAP >17 mm Hg

Ref: Kinnard T et al 2001. JACC 37(8):2025

<u>Methods of measuring left atrial pressure</u>

Left chamber size

Mitral inflow Doppler

& MR velocity

TDI mitral annulus

IAS movement

QuickTime^a and aVideo decompressorare needed to see this picture.

Mitral inflow Doppler patterns as a guide to LAP

Methods

ii) E/A >2 predicts LAP >20 mm Hg

iv) Deceleration Time of E waveDT < 120 msec predicts LAP >20 mm Hg

Ref: Gianuzzi P et al 1994 JACC 23(7);1630

Methods of measuring left atrial pressure

Left chamber size

Mitral inflow Doppler & MR velocity

TDI mitral annulus

IAS movement

QuickTime^a and aVideo decompressorare needed to see this picture.

PVWF

Colour M Mode of the mitral inflow as a guide to LAP

Method

combines colour M Mode of mitral inflow + Peak E wave velocity

 P_{ν} obtained from slope of first colour aliasing

 E/P_{v} > 2.6 predicts LAP > 15 mm Hg

Ref: Garcia MJ et al 1997.JACC;29(2):448

Colour M Mode of the mitral inflow as a guide to LAP

Normal

impaired relaxation

pseudonormal

De Boeck B..EJHF 2005

Methods of measuring left atrial pressure

Left chamber size

Mitral inflow Doppler & MR velocity

IAS movement

QuickTime^a and aCinepak decompressorare needed to see this picture.

Tissue Doppler Imaging of the mitral annulus as a guide to LAP

Tissue Doppler Imaging of the mitral annulus as a guide to LAP

DTI of lateral or medial annulus

Published work mainly on TTE

 $E/E^1 < 8$ mean LAP normal

 E/E^1 > 15 mean LAP > 12 mm Hg

Ref: Ommen SR et al 2000. Circulation 102:1788

lateral annulus

ie LAP is > 12 mmHg

consider the presence of Segmental wall defects

medial annulus

E / E¹ = 1.32/0.05 = 26

ie LAP is > 12 mmHg

<u>Methods of measuring left atrial pressure</u>

Mitral inflow Doppler

& MR velocity

TDI mitral annulus

IAS movement

QuickTime^a and aMicrosoft Video 1 decompressorare needed to see this picture.

PVWF

Using mitral regurgitant velocities to measure LAP

- LAP = systolic BP MR peak pressure
- need mitral regurgitant signal
- sBP in shock may not reflect LV systolic pressure
- inaccurate in aortic stenosis/HOCM
- often very useful

Ref: Garcia MJ et al 1997 JACC;29(2):448

ie LAP = 112 - 89 = 23 mm HG

Formula for Estimating PCWP by Using downslope of the MR CW signal

Uzun M..Echo2004.21;673

- \mathbf{t}_{1} = time between MR downslope 4 m/sec to end of signal
- \mathbf{t}_{2} time MR downslope 3 m/s to end of MR signal

PAWP = 24.196 $t_1/t_2 - 17.761$

ie $t_1/t_2 > 1.44$ then PCWP > 16 mm Hg 1.30 - 1.44PCWP N or increased

Study: n=80 MR++/+++

PAC comparison

satisfactory CW MR signal in 63/80 ie 78%

 $t_1/t_2 = 1.47$ ie LAP (PCWP) > 16 mm Hg

LAP by echoDoppler

Parameter	Description	Preload Estimate	
Mitral inflow	E/A > 2	PCWP ≥ 20 μμ Hγ	Σενατάιψ 43% Σπεχιφιψ 99%
Μιτρολινφλου Εωατσε	$\Delta T \le 120 \mu \exp($	ΠΧΩΠ>20	Σεναττατμ 100% Σπεχιφιψ 99%
<u>⊐⊅</u> Ivìµοναρψ Œνουσ ⊐⊒¥οω	Σψστολχ Φραχτιον<0.4	ΠΧΩΠ>18 ρ=0.78	
Μιτρολινφλωυ + Ξπευλιονορψτσενουσ Ξπέλοω	Α ρετερσολ>Α δυροτιον	ΛςΕΔ ΓΡ15	Σενατταψ 85% Σπεχιφιψ 79%
⊒ΣΜιτρολινφλου + ⊒ΣΜιτρολ αννίδυσ∆ΤΙ	E/E ₁ > 15	ΛςΕΔ Π>15	
<u>⊐Σ</u> Μιτρολινφλωυ <u>⊐Σ</u> ΜΜΔοφμιτρολ ⊐Συνφδωω	Ε/ς π > 2.6	ΓΙΧΩΓΙ>15	ПГ 0.89 NГ 0.86
ΔΑΣ μοσεμ εντ	Φξεδ χυρσαφε (Λ→ ΦΟ ≏ ∰% ⊒₩ΣΗ ⊆₩	฿฿฿๎฿๎ํํํํ๎๎๛๚ํ	
		©%`F==\$&F=@\$\$ �`NQ`NY\$	

Professor A McLean Critical Care Nepean University of Sydney 2007