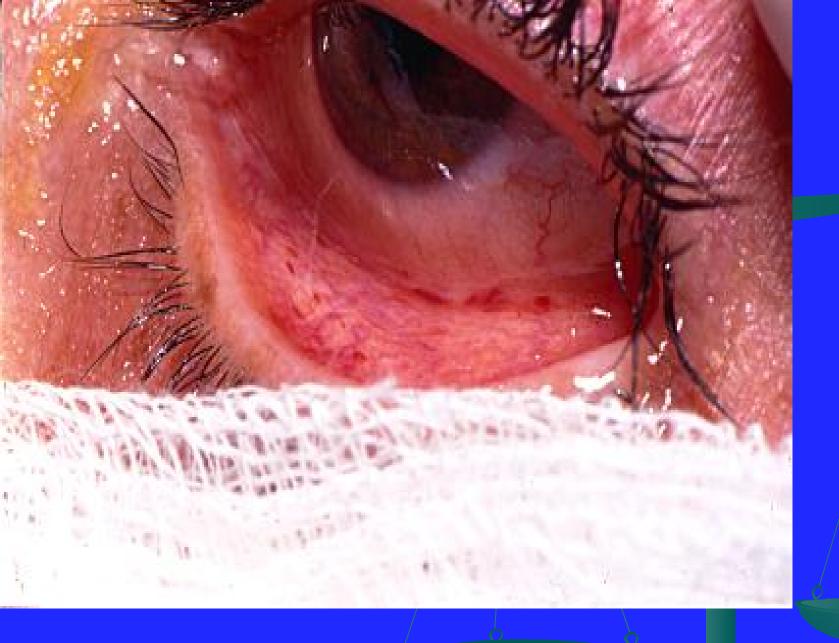
Pulmonary Embolus

Brussels Echo September 2007

The University of Sydney

Anthony Mclean
Nepean Intensive Care
Professor
Sydney University
Australia

Pulmonary Embolus



Massive pulmonary embolus

- no perfusion to right lung
- S1Q3T3

Fat embolus

Accuracy of Serum Biomarkers for the Prediction of in-hospital death in Acute Pulmonary Embolus

Study	Patients, No.	Biomarker	Assay	Cutoff Level	Positive Test Result	Sens	Spec	NPV	PPV
Konstantinides et al ²³	106	cTnI	Centaur (Bayer‡)	0.07 ng/mL	41	86	62	98	14
Konstantinides et al ²³	106	cTnT	Elecsys (Roche§)	0.04 ng/mL	37	71	66	97	12
Giannitsis et al ²⁴	56	cTnT	TropT (Roche)	0.10 ng/mL	32	88	78	97	44
Janata et al ²⁵	106	cTnT	Elecsys (Roche)	0.09 ng/mL	11	80	92	99	34
Pruszczyk et al ²⁷	64	cTnT	Elecsys (Roche)	0.01 ng/mL	50	100	57	100	25
ten Wolde et al ³¹	110	BNP	Shionoria (CIS Bio)	21.7 pmol/L	33	86	71	99	17
Kucher et al ³⁰	73	Pro-BNP	Elecsys (Roche)	500 pg/mL	58	95	57	100	12
Kucher et al ²⁹	73	BNP	Triage (Biosite¶)	50 pg/mL	58	95	60	100	12
Pruszczyk et al ²⁶	79	Pro-BNP	Elecsys (Roche)	153–334 pg/mL†	66	100	33	100	23

^{*}Values are given as %, unless otherwise indicated. Sens = sensitivity; Spec = specificity; NPV = negative predictive value; PPV = positive predictive value; cTnI = cardiac troponin I; cTnT = cardiac troponin T. Adapted with permission from Kucher and Goldhaber.²² †Age- and gender-adjusted cutoff levels according to manufacturer.

[‡]Leverkusen, Germany.

[§]Nutley, NJ.

Bagnols Sur Ceze, France.

[¶]San Diego, CA.

Serum Biomarkers in the diagnosis and assessment of RHF

- Troponins and BNP elevated in RV dysfunction
- Particular emphasis on role in pulmonary embolus
- Troponins elevated secondary to RV ischaemia/microinfarction resulting from

increase wall tension increase metabolic demand reduced myocardial perfusion

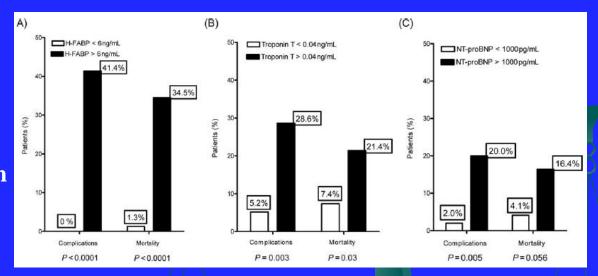
• BNP - released as result of increased RV shear stress

Accuracy of Serum Biomarkers for the Prediction of in-hospital death in Acute Pulmonary Embolus

Study	Patients, No.	Biomarker	Assay	Cutoff Level	Positive Test Result	Sens	Spec	NPV	PPV
Konstantinides et al ²³	106	cTnI	Centaur (Bayer‡)	0.07 ng/mL	41	86	62	98	14
Konstantinides et al ²³	106	cTnT	Elecsys (Roche§)	0.04 ng/mL	37	71	66	97	12
Giannitsis et al ²⁴	56	cTnT	TropT (Roche)	0.10 ng/mL	32	88	78	97	14
Janata et al ²⁵	106	cTnT	Elecsys (Roche)	0.09 ng/mL	11	80	92	99	34
Pruszczyk et al ²⁷	64	cTnT	Elecsys (Roche)	0.01 ng/mL	50	100	57	100	: 5
ten Wolde et al ³¹	110	BNP	Shionoria (CIS Bio)	21.7 pmol/L	33	86	71	99	7
Kucher et al ³⁰	73	Pro-BNP	Elecsys (Roche)	500 pg/mL	58	95	57	100	12
Kucher et al ²⁹	73	BNP	Triage (Biosite¶)	50 pg/mL	58	95	60	100	12
Pruszczyk et al ²⁶	79	Pro-BNP	Elecsys (Roche)	153–334 pg/mL†	66	100	33	100	23

^{*}Values are given as %, unless otherwise indicated. Sens = sensitivity; Spec = specificity; NPV = negative predictive value; PPV = positive predictive value; cTnI = cardiac troponin I; cTnT = cardiac troponin T. Adapted with permission from Kucher and Goldhaber. Age- and gender-adjusted cutoff levels according to manufacturer.

[‡]Leverkusen, Germany.


[§]Nutley, NJ.

Bagnols Sur Ceze, France.

[¶]San Diego, CA.

H-FABP in risk stratification in pulmonary embolism

Correlation of elevated
biomarker level on admission
with PE complication or
death at 30 days

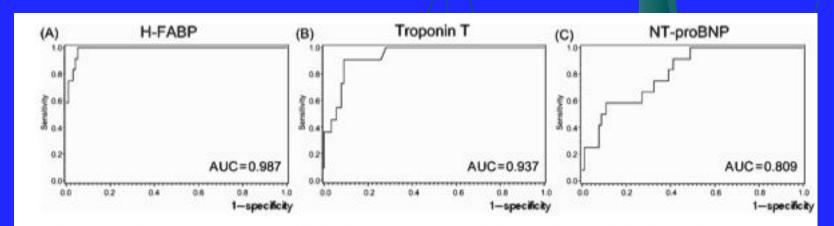
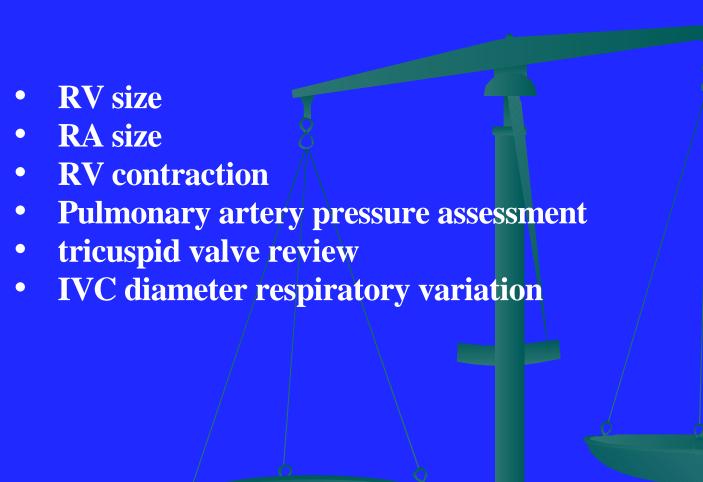
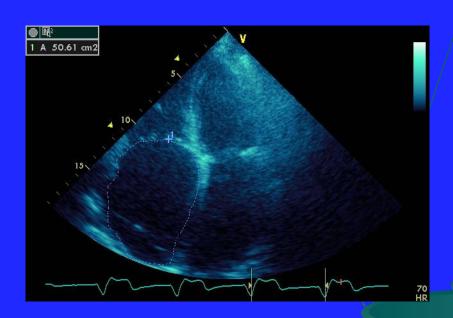
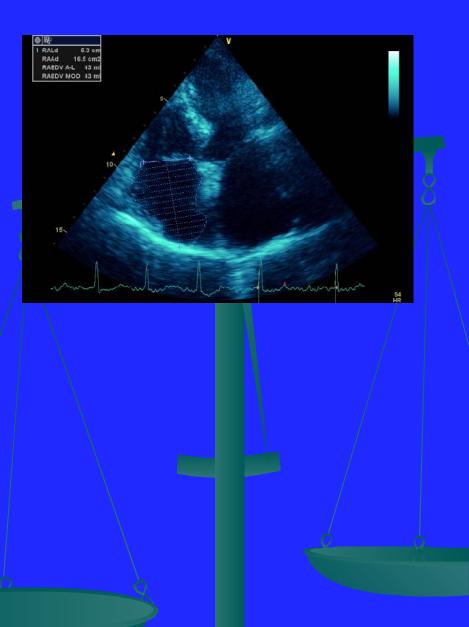



Figure 3 Displayed are the ROC curves of H-FABP levels on admission (A), maximal troponin T concentrations over the first 24 h (B), and NT-proBNP levels on admission (C) with the corresponding AUC values. H-FABP on admission yielded the largest area under the curve.

Acute Cor Pulmonale:

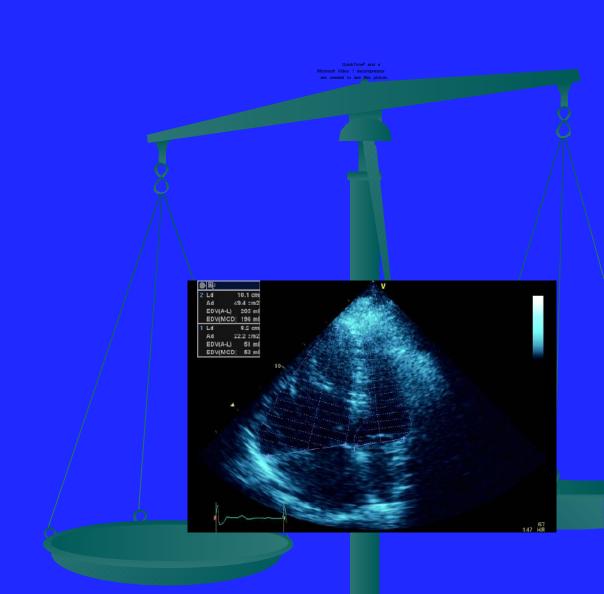
- sudden increase in right ventricular afterload
- most commonly associated with pulmonary embolus
 - ARDS
- results in increase in RV outflow impedance impairment of RV contraction
 RV systolic and diastolic dysfunction
- may cause circulatory collapse


ACP - rapid echoDoppler assessment:



Right ventricular Volume assessment:

- difficult in obtaining accurate measurements
- be wary of subjective assessments of RV volume
- accurate volume assessment not so important as identifying the presence of dilatation and function abnormalities
- LVEDA/ RVEDA useful ratio (Jardin F et al)


Dilated Right Atrium

Dilated RV

QuickTime# and a Microsoft Video 1 decompressor are needed to see this picture

PAH - dilated pulmonale artery trunk

PAX view by TTE

Right ventricular contractility:

- eyeballing
- TAPSE tricuspid annulus plane systolic excursion
- MPI or Tei Index of right ventricle
- TDI using Sm measurement

TAPSE

Right heart

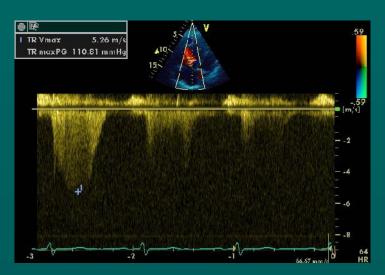
Tricuspid annulus
displacement is a
good tool for
assessing right
ventricular contraction

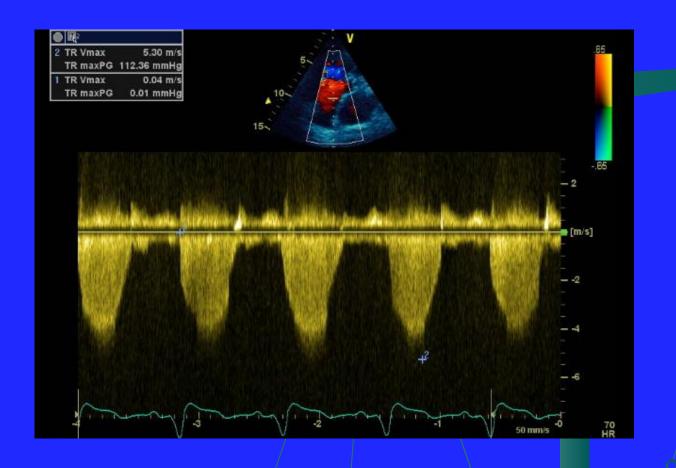
ACP - rapid echoDoppler assessment:

- RV size
- RA size
- RV contraction
- Signs of increased RV pressure : paradoxical septal motion
- Pulmonary artery pressure assessment
- tricuspid valve review
- IVC diameter respiratory variation

Pulmonary Artery Pressure assessment:

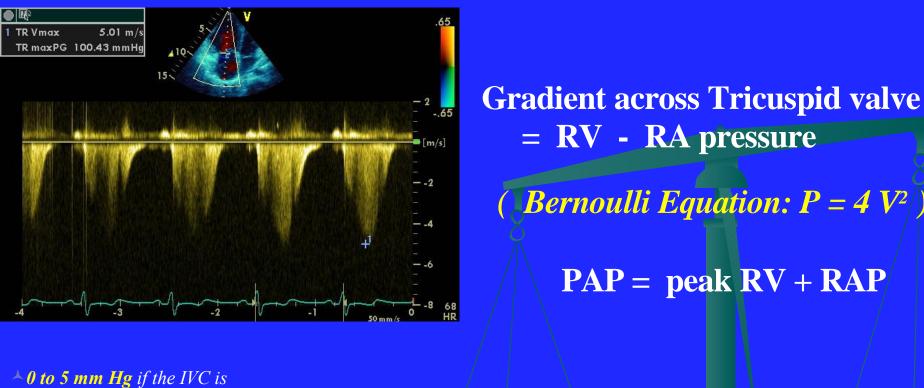
- 3. paradoxical septal motion
- 4. tricuspid regurgitant method
- 5. TDI of RV basal segment wall -IVRT prologation correlates with SPAP *
- 6. Nepean Index TDI Sm/RVD**
- 7. others


QuickTime³ and a
Microsoft Video 1 decompressor
are needed to see this picture. QuickTime^a and a QuickTime^a and a Microsoft Video 1 decompressor are needed to see this picture. are needed to see this picture.


Tricuspid Regurgitation - Colour Flow Doppler Mild Severe

QuickTime[®] and a Cinepak decompressor are needed to see this nicture

QuickTime^a and a Cinepak decompressor are needed to see this picture



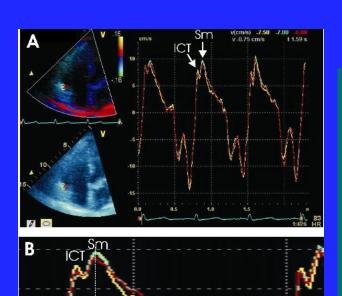
TR CW Doppler


```
SPAP =
    RV - RA + 10 mm Hg (automatic machine value)
              + RVP by IVC
              + CVP
```

Calculation of PAP using tricuspid regurgitation

A 0 to 5 mm Hg if the IVC is normal in dimension (1.2 to 2.3 cm) and collapses at least 50% upon inspiration

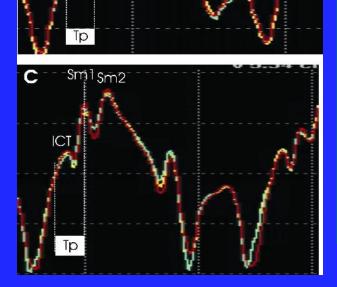
^5 to 10 mm Hg if the ICV is normal in dimension but does not collapse upon inspiration **→**


[▲] 10 to 15 mm Hg if the IVC is dilated but collapses upon inspiration

▲ 15 to 20 mm Hg if the IVC is dilated and does not collapse upon inspiration

inspiration

expiration

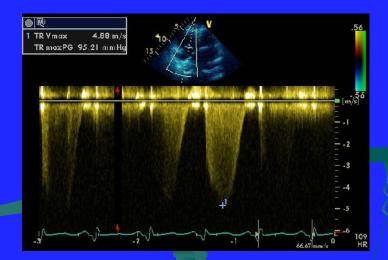


Index = RVD

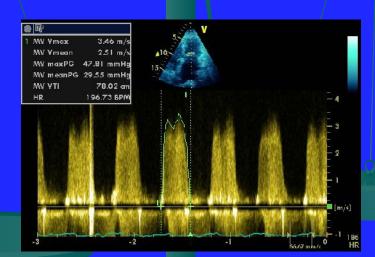
 $T_{\text{pea }k}$

Nepean < 22 cm/sec PASP <35 mmHg Index

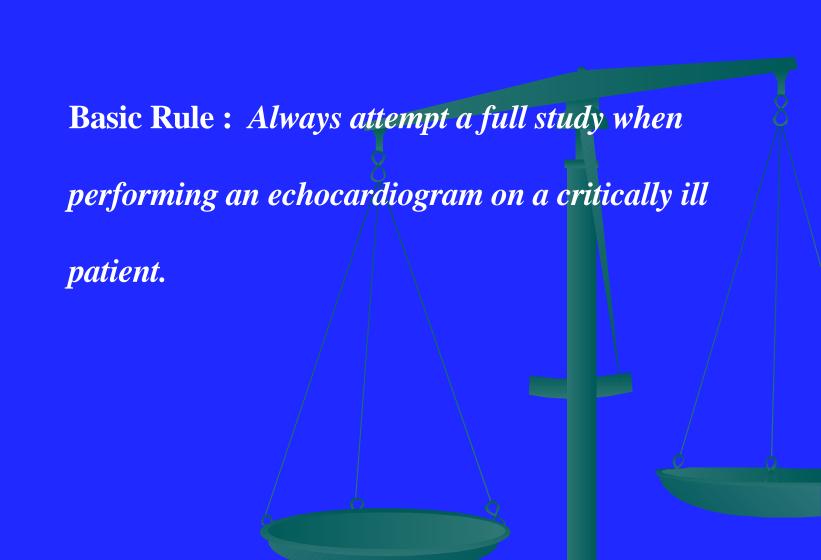
> 22 cm/sec PASP > 35 mmHg

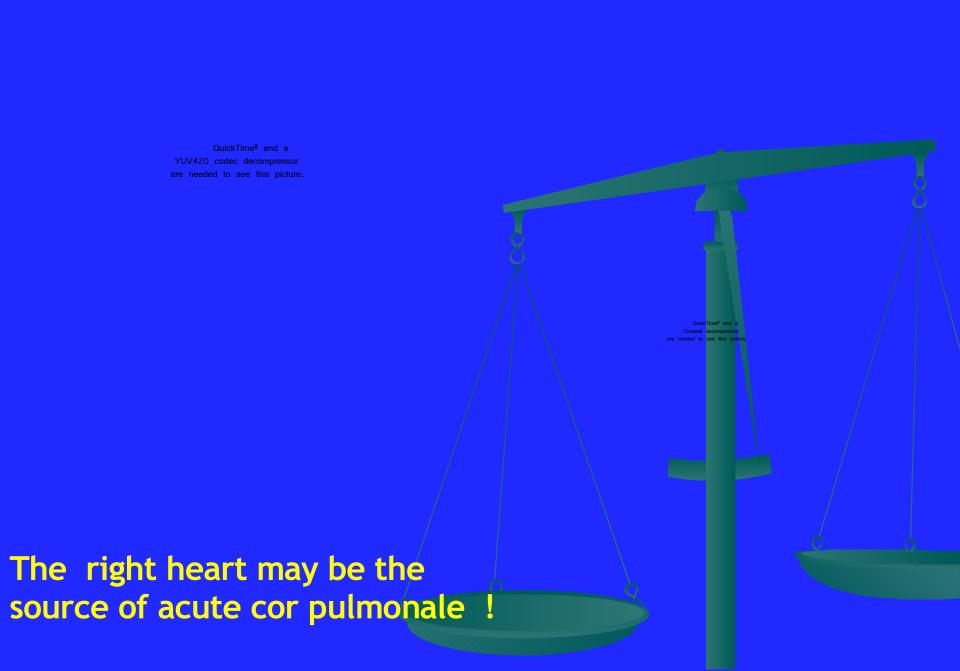

Ref: Mclean A, Ting I, Huang S, Wesley S Eur J Echo 2007;8(2):128-136

Echocardiographic Assessment of the right heart


- chamber dimensions
- right ventricular wall thickness
- ventricular contraction hypo/normal/hyperdynamic
 - subjective/ objective
- intracardiac shunts
- tricuspid valve
- pulmonary valve
- paradoxical septal motion
- pulmonary artery pressures
- hepatic vein dimensions
- left atrial pressure

48 year woman


- asthma since 20s
- admitted to ICU ? intubation
- August 2007.
- trainee performs echo- Sunday



QuickTime[®] and a Microsoft Video 1 decompresso

Severe mitral stenosis!!

Examine tricuspid valve routinely

Nepean ICU

-- call from ward : 67 year old man sudden collapse

cyanotic, apnoeic

9 days post lumbar spine surgery

leg Dopplers 2 days previously - NAD

brought to ICU within 15 minutes, CPR en route output only with CPR

Dx: Acute massive PE - treatment included metalyse 50 mg No definite improvement - echo during CPR

TIME

Rapid Echo Diagnosis of Pulmonary embolus leads to rapid goal directed treatment.

42 year man postoperative bowel surgery. Obese ++ dyspnoeic, hypotension.

Rx: analgesia, O², IV fluid failure to improve, admitted ICU. Rapid deterioration.

Cardiorespiratory arrest

