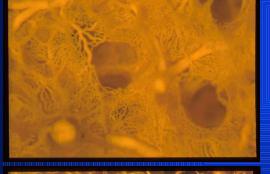
ECHOCARDIOGRAPHY IN


PATIENTS WITH ARDS

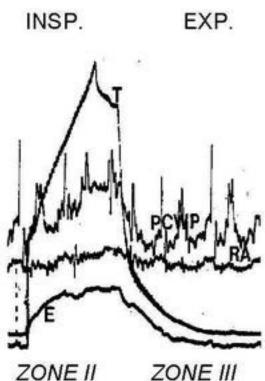
Focus on RV function assessment

Antoine Vieillard-Baron, Boulogne, France

ARDS MAY DEGRADE RV FUNCTION BY INCREASING AFTERLOAD

By causing damage to the pulmonary circulation

 By inducing pulmonary vascular remodeling


Table 1.-Factors contributing to pulmonary hypertension in acute respiratory distress syndrome

FunctionalMediator-induced vasoconstriction
Hypoxic pulmonary vasoconstrictionStructuralVascular compression by oedema fluid or fibrosis
Vascular wall remodelling
Thromboembolism
Reduced lung volume

Moloney Eur Respir J 2003

W Zapol

MECHANICAL VENTILATION MAY ALSO DEGRADE RV FUNCTION

Condition

ZONE III Condition

ZONE II Condition

Trans-pulmonary pressure (tracheal pressure at end-inspiratory pause (T) minus esophageal pressure (E)) is greater than pulmonary venous pressure (pulmonary capillary wedge pressure, PCWP)

ZONE III Condition

Trans-pulmonary pressure (tracheal pressure at end-expiratory pause (T) minus esophageal pressure (E)) is lower than pulmonary venous pressure (pulmonary capillary wedge pressure, PCWP)

CONSEQUENCES OF SUCH EFFECTS: ACP

LV long axis view LV short axis view C TRANS-OC 1100.+ LICU.+ CH ANDROTSE PARE / REANINGTICH CH AMEROISE PARE / REANINGTION T: --

No ACP


RV diastolic overload

RV systolic overload

CONSEQUENCES FOR THE LV

- Because of the pericardium, the sum of the cardiac cavities remains stable in acute conditions
- Any dilatation of the RV induces a restriction of the LV with a relaxation impairment

INCIDENCE AND PROGNOSTIC VALUE OF ACP BEFORE 1990

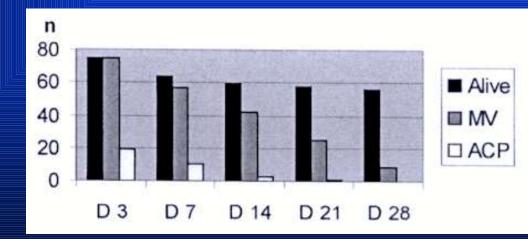
Jardin CCM 1985

23 patients

- PP: 39 ± 4 cmH₂O

ACP: 14/23 (61%)
 – mortality: 8/14 (57%) versus 33%

Severe ACP: 5/23 (22%)
 mortality: 5/5 (100%)


INCIDENCE AND PROGNOSTIC VALUE OF ACP AFTER 1996

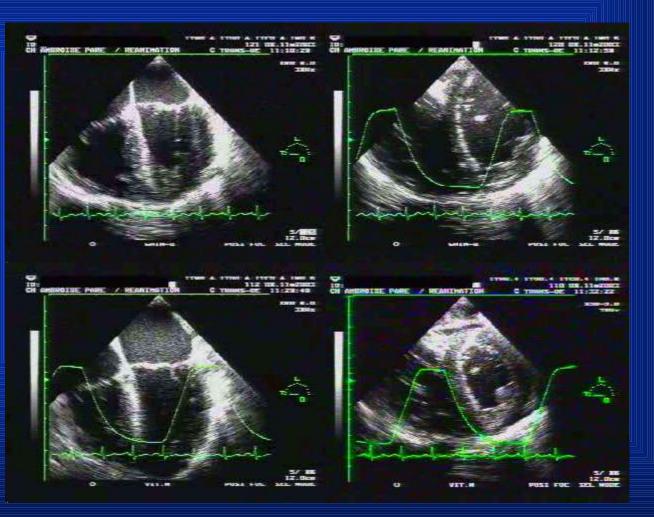
Vieillard-Baron CCM 2001

75 patients

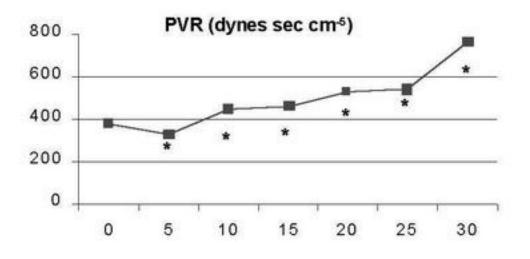
- PP: 24 \pm 5 cmH₂O

ACP: 19/75 (25%)
mortality: 6/19 (32%) versus 32%

ECHOCARDIOGRAPHY PERMITS RESPIRATORY SUPPORT TO BE ADAPTED TO RV FUNCTION


PLATEAU PRESSURE

400 x 25 PEEP 5 PP 33


SAP 92 mmHg

350 x 25 PEEP 5 PP 26

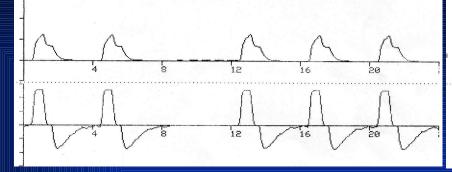
SAP 123 mmHg

PEEP (cm H₂O)

Jardin ICM 2004

PEEP 5 PP 27

PEEP 14 PP 27


PEEP 5 PP 27

SI_{RV} 23 ml/m² SAP 135 mmHg HR 100/mn SI_{RV} 12 ml/m² SAP 115 mmHg HR 121/mn SI_{RV} 23 ml/m² SAP 130 mmHg HR 110/mn

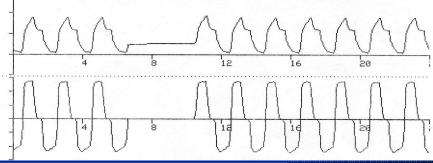


Table 4. Comparison between Doppler hemodynamic measurements obtained with a respiratory rate (RR) of 15 breaths/min (RR 15) and a respiratory rate of 30 breaths/min (RR 30)

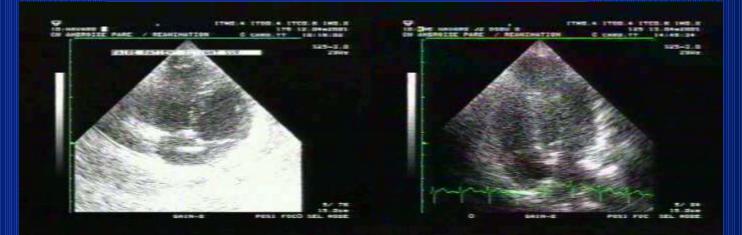
	RR 15	RR 30
ICT, msec FP, msec	46 ± 18 234 ± 36	60 ± 18^{a} 230 ± 35^{b}
V _{MAX} , m/sec PA _{VTI} , cm	$\begin{array}{c} 0.88 \pm 0.20 \\ 12.9 \pm 2.3 \end{array}$	$\begin{array}{c} 0.79 \pm 0.17^a \ 11.6 \pm 2.6^a \end{array}$
IVC diam, mm	18 ± 5	21 ± 5^a
HR, beats/min SI, cm ³ /m ² CI, L/min/m ²	$115 \pm 11 \\ 29 \pm 5 \\ 3.3 \pm 0.7$	$egin{array}{c} 115 \pm 11 \ 26 \pm 5^a \ 2.9 \pm 0.6^a \end{array}$

ICT, isovolumic contraction time; FP, flow period; V_{MAX} , peak velocity; PA_{VTI} , pulmonary artery velocity-time integral; IVC diam, inferior vena caval diameter; HR, heart rate; SI, stroke index; CI, cardiac index.

 ^{a}p < .05; b NS, not significant. Values are mean \pm sp.

Vieillard-Baron CCM 2002

ECHOCARDIOGRAPHY PERMITS CHOICE OF THE RIGHT VASO-ACTIVE DRUG IN RV DYSFUNCTION


OPTION 1: LV SYSTOLIC FUNCTION IS NORMAL

D1 D1 D1 Under mechanical ventilation NE infusion

D1

OPTION 2: LV SYSTOLIC FUNCTION IS ALTERED

D1

D1 Dobu 5


LASTLY

ECHOCARDIOGRAPHY MAY BE USED TO CHECK THE EFFICACY OF NO INHALATION

F, 45 Y old drug poisoning ARDS related to aspiration

D3

D4 NO inhalation

