

PRINCIPAL TRANS-THORACIC VIEWS

Daniel De Backer Department of Intensive Care Erasme University Hospital Brussels, Belgium

PRINCIPAL TRANS-THORACIC VIEWS

Trans-thoracic evaluation is the most commonly performed echocardiographic evaluation of the critically ill patient. It is fast to perform and can easily be repeated.

However, trans-thoracic visualization of the heart is usually of average quality in ICU patients, especially when mechanically ventilated. Accordingly, some views cannot always be obtained.

TTE in the ICU: not always easy to perform!

TRANS-THORACIC VIEWS

Due to the specific conditions of the patient, it is not uncommon that the probe needs to be positioned slightly differently.

Although most of the morphologic evaluations are still valid, most of the hemodynamic indices will be influenced by the angle of the beam.

Principal views (and probe positions)

- Parasternal views
- Apical views
- Subcostal views

- Parasternal views
- Apical views
- Subcostal views

- Parasternal views
- Apical views
- Subcostal views

PARASTERNAL VIEWS

- Parastenal views:
 - Parasternal long axis
 - Parasternal short axis

approad

Suprasternal

approach

PARASTERNAL (long and short axis)

PLA (PSA = probe rotation by 90°)

PARASTERNAL VIEWS

Parasternal long axis

•Visualizes:

- IV Septum
- RV ant wall
- LV postero lat wall
- LVOT
- Ao root

Measurements:

- Dimensions LV/RV
- Shortening fraction (TM)
- LVOT diameter

Parasternal long axis (TTE) Mesurements of LV/RV dimensions and calculation of shortening fraction (TM)

The use of time-movement (TM) mode allows to measure telesystolic and telediastolic LV dimensions and to calculate shortening fraction.

Ideally, this view should encounter the mitral valve papillary muscle, in the median part of LV.

Calculations: SF (diam) = (TDLVD – TSLVD) / TDLVD Calculation of LV volumes Cube formula (V = D³) Teicholz formula [V = 7D³/(2.4 + D)]

Other interest of this view: Allows visualization of paradoxal septal movement (and its localization in cardiac cycle with time-movement mode).

LATERO STERNAL VIEW

- Parasternal long axis
- Parasternal short axis

The median portion (mitral valve papillary muscle) is the most commonly used. Up and down angulation of the probe allows visualization of basal regions (up) or apical regions (down).

Visualizsation:

IV Septum

11. 37

V 30

TEE

LIST.

(BY)

31-12

- Anterior, postero lateral and inferior wall of LV
- Anterior wall RV

Ideal for detecting paradoxal septal movement.

Ideal for detecting paradoxal septal movement.

Principal mesurements: • RV/LV dimensions

LV area

H 82227:2 SBMM/S MIT:0

Mitral valve papillary muscles (median portion LV).

ETT parasternal short axis (BASAL)

Upper angulation of the probe

ETT parasternal short axis (BASAL)

RV outflow

Left atrium

Aortic Valve

> Tricuspid valve

Right atrium

Right atrium

ETT parasternal short axis (BASAL)

Upper angulation of the probe

 \Rightarrow RV ejection flow, just <u>above pulmonary valve</u>.

ETT parasternal short axis (BASAL)

Upper angulation of the probe

 \Rightarrow RV ejection flow, just <u>above</u> pulmonary valve.

 \Rightarrow Measurement of CO with velocity time integral (VTI) and pulmonary artery diameter (EV = VTI x π D² / 4).

 \Rightarrow Signs of pulmonary hypertension :

- (2) A short acceleration time (onset to peak <100 ms) evokes PAH
- (2) Flow morphology: A biphasic flow evokes massive pulmonary embolism

Pulmonary flow acceleration time

PAPm 35 mmHg

APICALS VIEWS

Apicals views:

- Apical 2 chambers
- Apical 4 chambers
- Apical 5 chambers

Probe in V-VIth intercostal space / medioaxillary line

ach

Apica

Suprasternal

approach

10.1.11.1.1.1.1

approac

ETT apical view

ETT apical view

ETT apical view 4 chambers

ETT apical view: 4 chambers

ETT apical view: 4 chambers

ETT apical view: 4chambers

! L/R Orientation of the probe !

Visualization:

• RV (free wall)

ETT apical view (4 chambers)

- IV Septum
- LV (apical, lat wall, LVOT)
- LA
- RA
- IA Septum

ETT apical view: 4 chambers

Measurements:

- Diameters long and short axis RV and LV
- Surfaces LV (RV)
- LA
- RA

Calculations:

- RV Dilatation (surfaces): TDSRV/TDSLV (nl<0.6)
- Volumes: TDVLV and TSVLV => EF (surface / length estimation, now replaced by Simpson method)

ETT apical view: 2 chambers

http://info.med.yale.edu/intmed/cardio/echo_atlas/views

ETT apical view: 2 chambers

ETT apical view: 5 chambers

Aortic flow (CO measurement / gradient)

SUBCOSTAL VIEWS

Sub xyphoidal: probe directed to left scapula

SUB COSTAL VIEWS

SUB XYPHOIDAL VIEW

SUB XYPHOIDAL VIEW ~ A4C

ETT Sub costal view (sub xyphoidal)

SUB COSTAL VIEWS

Visualization:

IVC

- Inferior vena cava
- Hepatic veins
- " 4 chamber view" (but measurements may be erroneous due to angle of the beam)

SUB COSTAL VIEWS

Mesurements:

- Inferior vena cava (estimation of CVP)
- Respiratory variations

! IVC diameter varies according to the site of measurement !

=> Respiratory variations are more useful than absolute value

Estimation of CVP ?

Based on relationship between size and pressure

Biased:

- vascular compliance
- pleural pressure (intra- vs extra- thoracic)
- semi-quantitative assessment

Jue et al JAmSocEcho 5:613;1992

Measurements of CVP by IVC diameter (mechanical ventilation)

Poor correlation (r=0.13) but:

- Diameter < 12 mm had a 100% specificity (but a 25% sensitivity) to diagnose a CVP<10 mmHg
- Diameter > 12 mm had no predictive value

SUB COSTAL VIEWS Respiratory fluctuations IVC (TM mode)

What do you need for hemodynamic evaluation ?

A4C =:	>	RV/LV surfaces / PA pressure
A5C =:	>	Aortic flow
PLA =	>	LV diameter (FS) / LVOT diam
PSA =:	>	contractility / LVDarea
Subcostal =	>	inferior vena cava

Good quality Doppler signals can often be obtained even when the quality of 2D echo is poor!

Do not hesitate to perform a TEE examination when TTE does not give the answer...

TT ECHO: PRINCIPAL VIEWS

Conclusions

The hemodynamic evaluation with trans thoracic echocardiography requires at least the visualization of parasternal views (LA and SA) and an apical 4 chambers view.

The echographist should adapt himself to the patient. When hybrid views are used, absolute values of measurements may be erroneous, but changes are still valid.

It is mandatory to always use the same views to estimate the impact of interventions.